Principal Component Regression with Artificial Neural Network to Improve Prediction of in Electricity Demand

نویسنده

  • Noor Azina Ismail
چکیده

Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the electricity demand prediction rates. The study includes 13 factors that related to electricity demand, and data for these factors have been collected in Malaysia. The new combination (PCR-BPNN) starts to solve the problem of collinearity among the input dataset, and hence, the reliability of the results. The work focuses also on the errors that recoded at that output stage of the electricity prediction models due to changes in the patterns of the input dataset. The accuracy and reliability of the results have been improved through the new proposed model. Validations have been achieved for the proposed model through comparing the value of three performance indicators of the PCR-BPNN with the performance rates of three major prediction models. Results show the outperformance of the PCR-BPNN over the other types of the electricity prediction models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal component regression with artificial neural network to improve prediction of electricity demand

Planning for electricity demand is a key factor for the success in the development of any countries. Such success can only be achieved if the demand for electricity is predicted correctly and accurately. This study introduces a new hybrid approach that combines Principle Component Regression (PCR) and Back-Propagation Neural Networks (BPNN) techniques in order to improve the accuracy of the ele...

متن کامل

Evaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques

This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...

متن کامل

Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy

This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...

متن کامل

Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy

This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...

متن کامل

Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network

The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015